高光谱成像仪高光谱数据常见的五种预处理方法
发布时间:2025-11-28
浏览次数:97
高光谱成像仪获取的高光谱数据有很多无用信息,因此就需要对其进行预处理,以提取有效的光谱数据。光谱数据预处理方法有多元散射校正、标准正态变量变换、数据平滑校正、导数光谱法、小波变换法等等。本文对这五种方法做了介绍。
高光谱成像仪获取的高光谱数据有很多无用信息,因此就需要对其进行预处理,以提取有效的光谱数据。光谱数据预处理方法有多元散射校正、标准正态变量变换、数据平滑校正、导数光谱法、小波变换法等等。本文对这五种方法做了介绍。

多元散射校正法:
多元散射校正是一种对光谱的线性化处理。样本的分布不均或者颗粒大小差异容易产生光散射,不能获取到“理想”光谱。该算法假设,实际光谱与“理想”光谱成线性关系,一般情况下,"理想”光谱无法获取,因此,常用样本数据集的平均光谱来替代。多元散射校正能够消除随机变化,校正后的光谱并非原始光谱。当光谱与待测物质的化学特性比较相关时,多元散射校正效果较好。
标准正态变量变换法:
标准正态变量变换类似于多元散射校正,可以用来消除散射误差以及光程变化等影响。但是,两种方法的处理思想不同,该方法不需要“理想”光谱,而是假设每一条光谱中,每个波长的光谱吸收值满足一些条件,比如符合正态分布,则标准正态变量变换就是对每一条光谱进行标准正态变换处理。标准变量变化是分别对每一条光谱进行校正,因此,较适合处理实验样本差异较大的光谱数据。
数据平滑校正法:
光谱仪的不同波段对能量响应的不同,会导致光谱曲线上显示很多随机的“毛刺”噪声,曲线变得不平滑。而数据平滑校正是最常用的一种,其基本思路是:在特定平,滑点的周围选取指定数量的若干点,对其平均或拟合,求得平滑点的最佳估计值,减少噪声干扰,消除随机噪声。移动窗口平均法和Savitzky-Golay最小二乘拟合法都是常用的光谱数据平滑校正方法。
光谱导数法:
求导可以减少仪器干扰、样本表面不均、光照等因素引起的基线漂移,一定程度上解决光谱信号重叠问题,将隐藏的微弱有效光谱信息放大,提供更好的光谱变化和分辨率。光谱导数法常用于近红外光谱吸收峰谷的辨别以及特征波长的提取中。导数光谱包括一阶导数光谱、二阶导数光谱以及高阶导数光谱等,实际应用中仅用一阶和二阶导数光谱就可以满足要求。很多随机噪声通常属于高频倍号,求导也许会使噪声变大,降低信噪比,若需要对原始光谱求导,前提是光谱分辨率和信噪比要高。常用的光谱导数方有直接差分法和SG卷积求导法。
小波变换法:
小波变换是新发展起来的一种时-频变换分析法,用于光谱数据压缩和噪声消除。小波变换继承了傅立叶变换的局部化思想,变换中的窗口大小随着频率变化而变化。此外,当时-频局部特性和多分辨特性较好时,小波变换还使得光谱信号在不同频率下被分解为多种尺度成分,并且根据尺度成分的大小选取相应的采样步长,从而能够聚焦到任意光谱信号中。小波变换的多尺度分辨率特点能够使其较快地从多噪声信号中获取原始光谱信号,因此,利用小波分析对含有较大噪声的光谱信号进行消除,是一个非常重要的应用。
相关产品
-
法庭科学伪造人像的多光谱检验方法
多光谱人像multispectral face image,利用多光谱人像采集设备,拍摄到的包含人脸信息的多光谱图像°本文简单总结了法庭科学伪造人像的多光谱检验..
-
伪造人像多光谱检验方法示例及说明
模型辅助检验法,是基于机器学习或专家系统,对真实人像和伪造人像的多光谱特性波段开展综合分析,以辅助判断真实人像或伪造人像检验特征的方法的统称。采用模型(例如:深..
-
用于遥感和高光谱成像的制冷型红外探测器
据麦姆斯咨询报道,制冷型红外探测器技术进步推动了众多红外遥感设备的快速发展,这些设备广泛应用于环境监测领域,包括高光谱遥感、空间成像与监控等。得益于低温制冷型探..
-
高光谱成像仪用于苹果内外品质无损检测
苹果作为农产品的重要组成成分,苹果的质量安全问题显得越来越重要,在购买苹果时,消费者不仅重视其外形,而且对于其内部品质也越来越在乎。但传统苹果内在品质检测损耗严..













