高光谱成像仪高光谱数据常见的五种预处理方法
发布时间:2025-11-28
浏览次数:207
高光谱成像仪获取的高光谱数据有很多无用信息,因此就需要对其进行预处理,以提取有效的光谱数据。光谱数据预处理方法有多元散射校正、标准正态变量变换、数据平滑校正、导数光谱法、小波变换法等等。本文对这五种方法做了介绍。
高光谱成像仪获取的高光谱数据有很多无用信息,因此就需要对其进行预处理,以提取有效的光谱数据。光谱数据预处理方法有多元散射校正、标准正态变量变换、数据平滑校正、导数光谱法、小波变换法等等。本文对这五种方法做了介绍。

多元散射校正法:
多元散射校正是一种对光谱的线性化处理。样本的分布不均或者颗粒大小差异容易产生光散射,不能获取到“理想”光谱。该算法假设,实际光谱与“理想”光谱成线性关系,一般情况下,"理想”光谱无法获取,因此,常用样本数据集的平均光谱来替代。多元散射校正能够消除随机变化,校正后的光谱并非原始光谱。当光谱与待测物质的化学特性比较相关时,多元散射校正效果较好。
标准正态变量变换法:
标准正态变量变换类似于多元散射校正,可以用来消除散射误差以及光程变化等影响。但是,两种方法的处理思想不同,该方法不需要“理想”光谱,而是假设每一条光谱中,每个波长的光谱吸收值满足一些条件,比如符合正态分布,则标准正态变量变换就是对每一条光谱进行标准正态变换处理。标准变量变化是分别对每一条光谱进行校正,因此,较适合处理实验样本差异较大的光谱数据。
数据平滑校正法:
光谱仪的不同波段对能量响应的不同,会导致光谱曲线上显示很多随机的“毛刺”噪声,曲线变得不平滑。而数据平滑校正是最常用的一种,其基本思路是:在特定平,滑点的周围选取指定数量的若干点,对其平均或拟合,求得平滑点的最佳估计值,减少噪声干扰,消除随机噪声。移动窗口平均法和Savitzky-Golay最小二乘拟合法都是常用的光谱数据平滑校正方法。
光谱导数法:
求导可以减少仪器干扰、样本表面不均、光照等因素引起的基线漂移,一定程度上解决光谱信号重叠问题,将隐藏的微弱有效光谱信息放大,提供更好的光谱变化和分辨率。光谱导数法常用于近红外光谱吸收峰谷的辨别以及特征波长的提取中。导数光谱包括一阶导数光谱、二阶导数光谱以及高阶导数光谱等,实际应用中仅用一阶和二阶导数光谱就可以满足要求。很多随机噪声通常属于高频倍号,求导也许会使噪声变大,降低信噪比,若需要对原始光谱求导,前提是光谱分辨率和信噪比要高。常用的光谱导数方有直接差分法和SG卷积求导法。
小波变换法:
小波变换是新发展起来的一种时-频变换分析法,用于光谱数据压缩和噪声消除。小波变换继承了傅立叶变换的局部化思想,变换中的窗口大小随着频率变化而变化。此外,当时-频局部特性和多分辨特性较好时,小波变换还使得光谱信号在不同频率下被分解为多种尺度成分,并且根据尺度成分的大小选取相应的采样步长,从而能够聚焦到任意光谱信号中。小波变换的多尺度分辨率特点能够使其较快地从多噪声信号中获取原始光谱信号,因此,利用小波分析对含有较大噪声的光谱信号进行消除,是一个非常重要的应用。
相关产品
-
高分高光谱遥感图像计算成像:从融合到光谱超分
介绍了中国发射的遥感卫星获取的高光谱遥感图像在多个领域的应用,指出现有光学系统难以同时实现高空间分辨率和高光谱分辨率的挑战。..
-
推扫式高光谱相机的优点
在光谱成像技术领域,推扫式高光谱相机(亦称线扫描式)凭借其独特的工作原理,在众多工业与科研场景中确立了核心地位。本文简单介绍了推扫式高光谱相机的优点。..
-
印度高光谱地球成像卫星等16颗极地卫星运载火箭发射任务再次失败
据新华社援引印度媒体报道,印度12日上午进行的极地卫星运载火箭发射任务出现异常,火箭第三级点火后偏离轨道,卫星发射任务失败。印度空间研究组织正在分析相关数据。..
-
高光谱成像仪高光谱数据预测模型的建立方法
高光谱成像仪获取的高光谱数据中含有丰富的光谱信息,对光谱数据进行预处理,提取特征波长,然后建立预测模型,进而对样本进行定性与定量的分析。本文对高光谱成像仪高光谱..













