高光谱成像仪光谱数据波长的四种常见筛选方法
发布时间:2025-11-28
浏览次数:220
高光谱信息具有波长分辨率高的优点,可以在很大程度上提高模型的预测性能,然而在全波段光谱信息中含有一定的冗余信息,极大的影响了预测模型的运行速度和预测精度。因此,就需要对特征波长进行筛选。本文对高光谱成像仪光谱数据波长的四种常见筛选方法做了介绍。
高光谱信息具有波长分辨率高的优点,可以在很大程度上提高模型的预测性能,然而在全波段光谱信息中含有一定的冗余信息,极大的影响了预测模型的运行速度和预测精度。因此,就需要对特征波长进行筛选。本文对高光谱成像仪光谱数据波长的四种常见筛选方法做了介绍。

回归系数(RC)法:
RC法的运算原理是以回归系数绝对值的大小为依据,捕捉特征变量(光谱信息)与目标变量(硬度、弹性、内聚性)之间的线性关系,从而提取出最优波长来简化全波段PLS预测模型。一般来说,回归系数绝对值越大,对应的波长有效信息越多,模型的预测效果越好。
逐步回归(SR)法:
SR法是一种正向添加、反向删除变量的多元线性回归方法。每当添加一个变量时,总是使用F临界值来确定它的资格。当然,个体变量的有效性并不意味着所有变量累加模型的预测性能都会提高,这时就应该采用步进准则。如果一个变量无关紧要,则删除模式在建模之前由系统启动,最终筛选出最优的波长。
连续投影(SPA)算法:
SPA运行步骤包括候选子集的投影操作、根据预测残差平方和(PRESS)准则对候选子集进行评价、最后用F检验准则对变量进行消除三个阶段。SPA 是一种能有效解决光谱共线性问题的变量选择方法,在光谱信息的重复性高、冗余度最小方面具有很大的优势,这是通过找到最小的PRESS值和相应的最优波长的最小数目来实现的。
竞争性自适应重加权取样(CARS)法:
CARS是又一种基于回归系数绝对值的变量筛选方法,首先采用蒙特卡罗采样法选择固定比例的样本作为标定模型,其次采用指数递减函数进行波长选择,去掉系数低的变量,然后采用自适应重加权抽样选择重要变量。选择基于它们的权重值,对遗漏的变量以类似的方式进行进一步处理,以找到下一组信息变量。该方法主要是依据“适者生存”的原则,挑选出一组回归系数绝对值较大的、交叉验证均方根误差最低的变量,从而达到优化模型的目的。
相关产品
-
高分高光谱遥感图像计算成像:从融合到光谱超分
介绍了中国发射的遥感卫星获取的高光谱遥感图像在多个领域的应用,指出现有光学系统难以同时实现高空间分辨率和高光谱分辨率的挑战。..
-
推扫式高光谱相机的优点
在光谱成像技术领域,推扫式高光谱相机(亦称线扫描式)凭借其独特的工作原理,在众多工业与科研场景中确立了核心地位。本文简单介绍了推扫式高光谱相机的优点。..
-
印度高光谱地球成像卫星等16颗极地卫星运载火箭发射任务再次失败
据新华社援引印度媒体报道,印度12日上午进行的极地卫星运载火箭发射任务出现异常,火箭第三级点火后偏离轨道,卫星发射任务失败。印度空间研究组织正在分析相关数据。..
-
高光谱成像仪高光谱数据预测模型的建立方法
高光谱成像仪获取的高光谱数据中含有丰富的光谱信息,对光谱数据进行预处理,提取特征波长,然后建立预测模型,进而对样本进行定性与定量的分析。本文对高光谱成像仪高光谱..













