高光谱成像仪光谱数据的分析与处理方法
发布时间:2025-11-28
浏览次数:172
高光谱图像数据处理的分析方法有很多,一般的分析流程是对原始光谱信息进行校正和预处理之后进行降维,选择关键信息建立模型进行结果分析。本文对高光谱成像仪光谱数据的分析与处理方法做了介绍。
高光谱图像数据处理的分析方法有很多,一般的分析流程是对原始光谱信息进行校正和预处理之后进行降维,选择关键信息建立模型进行结果分析。本文对高光谱成像仪光谱数据的分析与处理方法做了介绍。

数据校正与预处理:
原始高光谱图像信息是能量值,图像采集过程受外界光照强度、试样表面阴影等的影响较大,需要通过白板校正获取反射率或吸收率。图像预处理可以通过直方图均值化或主成分分析(PCA),常用的光谱信息预处理方法有平滑、求导、遗传算法(GA)、归化(NOR)、标准正态变量变换(SNV)和多元散射校正(MSC)等。经过数据校正和预处理,有助于提高高光谱的信噪比以及实现原始光谱数据的挖掘。
数据降维:
对于图像信息,可以直接提取具有代表性的单一或几个波长范围内的图像,也可以采用主成分分析法、最小噪声分离法(MNF)、独立成分分析法(ICA)等获取关键的主成分图像,还可以采用波段比算法、差分算法等提取数个特征波长图像,计算获得新的图像。对于光谱信息,可以以全部目标像素或感兴趣区域的像素光谱平均后获得平均光谱信息,也可以提取每个像素的光谱信息用于像素分类分析。
模型建立与分析:
使用图像信息,可以采用各种图像处理技术对图像进行分割获取有效信息,提取相关特征参数建立模型。使用光谱信息,可以采用化学计量学方法如多元线性回归(MLR)、主成分回归(PCR)、偏最小二乘回归(PLSR)、支持向量机(SVM)、人工神经网络(ANN)等,建立定性或定量分析模型。在样本集挑选时可以根据分析方法的不同来选择,如定性分析可以用随机挑选法、Kennard-Stone法等,定量分析中可以用含量梯度法和SPXY法等。
相关产品
-
法庭科学伪造人像的多光谱检验方法
多光谱人像multispectral face image,利用多光谱人像采集设备,拍摄到的包含人脸信息的多光谱图像°本文简单总结了法庭科学伪造人像的多光谱检验..
-
伪造人像多光谱检验方法示例及说明
模型辅助检验法,是基于机器学习或专家系统,对真实人像和伪造人像的多光谱特性波段开展综合分析,以辅助判断真实人像或伪造人像检验特征的方法的统称。采用模型(例如:深..
-
用于遥感和高光谱成像的制冷型红外探测器
据麦姆斯咨询报道,制冷型红外探测器技术进步推动了众多红外遥感设备的快速发展,这些设备广泛应用于环境监测领域,包括高光谱遥感、空间成像与监控等。得益于低温制冷型探..
-
高光谱成像仪用于苹果内外品质无损检测
苹果作为农产品的重要组成成分,苹果的质量安全问题显得越来越重要,在购买苹果时,消费者不仅重视其外形,而且对于其内部品质也越来越在乎。但传统苹果内在品质检测损耗严..













