高光谱图像特征的表达形式
发布时间:2025-07-18
浏览次数:410
高光谱图像数据将地物光谱信息和图像信息融为一体,其数据具有两类表述空间:几何空间和光谱特征空间。
高光谱图像数据将地物光谱信息和图像信息融为一体,其数据具有两类表述空间:几何空间和光谱特征空间。

几何空间
直观表达每个像元在图像中的空间位置以及它与周边像元之间的相互关系,为高光谱图像处理与分析提供空间信息。
光谱特征空间
高光谱图像中的每个像元对应着多个成像波段的反射值,近似连续的光谱曲线表达为一个高维向量,向量在不同波段值的变化反映了其所代表的目标的辐射光谱信息,描述地物的光谱响应与波长之间的变化关系。其优势是特征维度的变化以及扩展性。对于同样的高光谱数据,能够从最大可分性的角度在更高维的特征空间中观察数据分布,或者映射到一系列低维的子空间。因此将高光谱像元向量作为高维特征空间里的数据点,根据数据的统计特性来建立分类模型。模式识别成为图像分类的理论基础,基于该方法的分类成为应用最广泛分类方式。光谱特征空间的弱点是无法表达像元间的几何位置关系。
从高光谱图像分类框架(图7)可以看出,其核心问题的解决方案在于两方面:一是特征挖掘,特征是高光谱图像分类的重要依据,通过变换和提取得到不同地物类别具有最大差异性的特征,能够极大提高感兴趣类别的可分性程度;二是分类器设计,利用适合的分类器有利于发现复杂数据的内涵,如非线性特征等,从而提高高光谱图像分类的精度。
上一页 : 高光谱热红外硬件传感器发展
下一页 : 高光谱成像技术的九大行业应用和产品推荐
相关产品
-
元旦快乐 | 新岁启幕,智测未来——三恩时与您共赴2026
钟声回荡,既是告别,亦是邀请。我们深深感恩过去一年每一份相遇、每一次托付与每一段同行。过往的成绩,已由时光精准记录;未来的华章,正待我们合力书写。 ..
-
高光谱成像系统的成像原理及光谱图像信息组成
高光谱成像系统因其获取的样本信息具有图谱合一的特定,因而在不同的行业有着广泛的应用,可以对样本进行定性与定量的分析。本文对高光谱成像系统的成像原理及光谱图像的做..
-
高光谱成像仪怎么用于草莓硬度的无损检测?
硬度是评价草莓品质的重要指标之一,对草莓的硬度进行检测,不仅可以指导消费者,而且对于草莓的采后贮藏和加工具有很重要的意义。那么,高光谱成像仪怎么用于草莓硬度的无..
-
高光谱图像数据基于纯像元的分析方法
高光谱成像仪获取的高光谱数据具有波段数多、光谱分辨率高、数据量大、数据率高等特点,巨大的数据量为应用和分析带来不便,因此就需要对高光谱数据进行处理。本文对高光谱..













