基于视觉大模型的高光谱遥感处理研究取得进展
发布时间:2025-11-06
浏览次数:78
与传统光学遥感相比,高光谱遥感图像具有数百个独立光谱波段,能够更精确地识别地表物质。然而,标注样本稀缺长期以来严重制约了其实际应用。现有研究普遍采用少样本学习范式,虽在一定程度上缓解了样本不足的问题,但由于缺乏对跨域光谱信息的一致性约束,加之数据稀缺导致模型规模难以扩展,其跨域泛化能力仍然受限。
与传统光学遥感相比,高光谱遥感图像具有数百个独立光谱波段,能够更精确地识别地表物质。然而,标注样本稀缺长期以来严重制约了其实际应用。现有研究普遍采用少样本学习范式,虽在一定程度上缓解了样本不足的问题,但由于缺乏对跨域光谱信息的一致性约束,加之数据稀缺导致模型规模难以扩展,其跨域泛化能力仍然受限。

针对上述问题,中国科学院西安光学精密机械研究所团队,创新性地提出了一种基于视觉大模型的高光谱少样本分类框架SpectralDINO。该框架通过源域光谱对齐模块统一各数据域的光谱信息,增强模型学习跨域通用特征能力。团队同时设计了一种新型低秩适应(LoRA)模块,并使用交替训练策略对视觉大模型进行微调,通过双混合子空间的设计,解决了原始LoRA无法区分跨域数据的结构性问题。

SpectralDINO模型框架
实验显示,该方法有效提升了模型从少量样本提取特征的泛化能力,提高了模型在高光谱少样本分类任务中的表现,在多个公开数据集上超越现有先进方法并实现了最佳分类准确率,为环境检测、精准农业等遥感应用提供新的技术路径。

不同方法在Pavia University数据集上的分类结果
相关研究成果发表在《IEEE地球科学与遥感学报》(IEEE Transactions on Geoscience and Remote Sensing)上。研究工作得到国家自然科学基金、陕西省自然科学基础研究计划、陕西省重点研发计划等的支持。
来源: 西安光学精密机械研究所
论文链接:点击查看
相关产品
-
基于视觉大模型的高光谱遥感处理研究取得进展
与传统光学遥感相比,高光谱遥感图像具有数百个独立光谱波段,能够更精确地识别地表物质。然而,标注样本稀缺长期以来严重制约了其实际应用。现有研究普遍采用少样本学习范..
-
云冈石窟焕新开放 “高清立体照”解码千年色彩
..
-
高光谱成像仪和多光谱成像仪的区别
高光谱与多光谱成像技术代表了光学遥感领域的两个重要发展方向,在波段数量、光谱分辨率和应用场景上存在显著差异,共同构建了现代对地观测与物质识别的技术体系。本文简单..
-
高光谱成像仪怎么分类?高光谱成像仪的分类
高光谱成像仪可以通过光谱数据,对样本进行定性与定量的分析,因此在不同的行业有着广泛的应用。其依据光谱分辨率、工作方式及分光元件等的不同,可以分为不同的类型。本文..













